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researchers and scientists to share their recent developments and to present 

their original results in various fields of mathematics. 

We welcome you to Antalya, Türkiye and look forward to seeing you in 

upcoming conferences. 

 

                F
A

IA
 2

0
2

4
:                     A

B
S

T
R

A
C

T
 B

O
O

K
 

The main organizers of the conference are:  
 

Bahcesehir University (Turkey);  

Institute of Mathematics and 

Mathematical Modelling (Kazakhstan);  

Analysis & PDE Center,  

Ghent University (Belgium). 
 

This conference is supported by: 
 

 The Public Foundation "Galym Project"  

(Almaty, Kazakhstan) 
 

  

International   Mathematical 

Conference  

"Functional Analysis  

in Interdisciplinary Applications"  

FAIA 

2025 
Sept. 6-13, 2025 
Antalya (Manavgat), 

Türkiye  



International Mathematical
Conference

Functional Analysis
in Interdisciplinary

Applications”

ABSTRACT BOOK

of the conference FAIA 2025

Edited by

Charyyar Ashyralyyev,

Makhmud A. Sadybekov

September 6 –13, 2025

Bahcesehir University,
Istanbul, Türkiye

Institute of Mathematics and Mathematical Modeling,
Almaty, Kazakhstan

Ghent Analysis & PDE Center, Ghent University,
Ghent, Belgium

1



2 International Mathematical Conference FAIA 2025

УДК 517,98
ББК 22.162
I-10

Edited by Charyyar Ashyralyyev, Makhmud A. Sadybekov

International Mathematical Conference “Functional Analysis in Interdisciplinary Applica-
tions”. Abstract book of the conference FAIA2025. – Almaty: Institute of Mathematics
and Mathematical Modeling, 2025.– 77 p. – Eng.

ISBN 978-601-08-5402-4

We, the participants of International Mathematical Conference ”Functional Analysis in
Interdisciplinary Applications” (FAIA 2025), all are very blessed to meet in-person after the
pandemic and this abstract book is the valuable outcome of this gathering. As organizers, we
are also fortunate because we received a very high number of abstracts submitted.

FAIA 2025 is the continuation of our biannual conference The International Mathematical
Conference ”Functional Analysis in Interdisciplinary Applications” (FAIA).

Previous conferences were held in Astana (Kazakhstan) in October 2–5, 2017; Lefkosa
(Cyprus) in September 6–9, 2018; Antalya (Türkiye) in October 2–7, 2023.

The conference aims are to join mathematicians working in the area of analysis and applied
mathematics together to share new trends of applications of mathematics. As the knowledge of
different branches of mathematics open new perspectives, it is important to learn more about
the developments and advancements in the field of applied mathematics and analysis. As or-
ganizers we are proud to see that FAIA provides a forum for researchers and scientists to share
their recent developments and to present their original results in various fields of mathematics.

We welcome you to Antalya, Türkiye and look forward to seeing you in upcoming confer-
ences.

Webpage: https://www.conference-faia2025.com

ISBN 978-601-08-5402-4

©International Mathematical Conference ”Functional Analysis in Interdisciplinary Appli-
cations” FAIA 2025

.

Bahcesehir University (Türkiye), Institute of Mathematics and
Mathematical Modeling (Kazakhstan), Ghent University (Belgium)



International Mathematical Conference FAIA 2025 3

COMMITTEE

CHAIRS

• Allaberen Ashyralyev, Bahcesehir University, Türkiye, Institute of Mathematics and
Mathematical Modeling, Kazakhstan

• Michael Ruzhansky, Ghent University, Belgium

• Makhmud Sadybekov, Institute of Mathematics and Mathematical Modeling, Kaza-
khstan
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FOREWORD
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The Fujita exponent for a heat equation with mixed local
and nonlocal nonlinearities

Ahmad Fino1, Mokhtar Kirane2

1 College of Engineering and Technology, American University of the Middle East

ahmad.fino@aum.edu.kw
2 Department of Mathematics, College of Computing and Mathematical Sciences, Khalifa

University, P.O. Box: 127788, Abu Dhabi, UAE

mokhtar.kirane@ku.ac.ae

Abstract: We study a semilinear heat equation involving a mixed local and nonlocal non-
linearity. First, we establish the local existence and uniqueness of mild solutions for regular,
nonnegative initial data. We then prove the global existence and nonexistence of solutions
under suitable growth conditions on the nonlinear terms. This leads to the identification of
the Fujita exponent.

Throughout this note we mainly use techniques from these works [1, 2].

This research was funded by the Research Group Unit, College of Engineering and Tech-
nology, American University of the Middle East

Keywords: Nonlinear parabolic equations, local/global existence, finite-time blow-up, non-
linear memory, nonlinear reaction, Fujita critical exponent,

2020 Mathematics Subject Classification: 35K55, 35B44, 35A01, 26A33

References:

[1] H. Fujita, On the blowing up of solutions of the problem for ut = ∆u+u1+α, J. Fac.
Sci. Univ. Tokyo 13 (1966), 109–124.

[2] T. Cazenave, F. Dickstein, F. D. Weissler, An equation whose Fujita critical exponent

is not given by scaling, Nonlinear Analysis 68 (2008), 862–874.

Bahcesehir University (Türkiye), Institute of Mathematics and
Mathematical Modeling (Kazakhstan), Ghent University (Belgium)
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Orthoisomorphisms of idempotents of certain unital
C∗-algebras

Fouzia Shaheen1, Ahmed Al Rawashdeh2

1 Department of Mathematical Sciences, UAE University, UAE

201990173@uaeu.ac.ae
2 Department of Mathematical Sciences, UAE University, UAE

aalrawashdeh@uaeu.ac.ae

Abstract: Al-Rawashdeh studied the induced map θφ between the projections and he
proved that it is an orthoisomorphism for a large class of C∗-algebras. In this paper, we
extend the results of Al-Rawashdeh by replacing U(A) by GL(A), and P(A) by I(A), and
we prove that θφ is an orthoisomorphism of idempotents for certain type of UHF algebras,
C∗-algebras of 2-divisible K0-groups, Cuntz algebras, and for simple, unital purely infinite
C∗-algebras having 2-divisible K0-groups.

2020 Mathematics Subject Classification: 46L05, 46L35

References:

[1] A. Al-Rawashdeh, A. Booth, and T. Giordano, Unitary Groups As a Complete
Invariant, Journal of Functional Analysis, vol. 26, no. 2, pp. 4711–4730, 2012.
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[2] T. Giordano and A. Sierakowski, The General Linear Group as a Complete Invari-
ant for C∗-Algebras, International Journal of Mathematics, vol. 26, no. 8, 2014.
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[3] H. Dye, On the Geometry of Projections in Certain Operator Algebras, Annals of
Mathematics, Second Series, vol. 61, pp. 73–89, 1955.

[4] A. Al-Rawashdeh, On the extension of unitary group isomorphisms of unital UHF-

algebras, International Journal of Mathematics, vol. 26, no. 8, 2015.
[5] K. R. Davidson, C∗-Algebras by Example, Fields Institute Monographs, Amer. Math.

Soc., Providence, RI, vol. 6, 1996.

[6] A. Al-Rawashdeh, On the extension of unitary group Automorphisms of Cuntz al-
gebras, International Journal of Mathematics, vol. 26, no. 8, 2019.

[7] B. Blackadar, K-Theory for Operator Algebras, 2nd ed., MSRI Publications, vol. 5,
Cambridge University Press, Cambridge, 1998.

Bahcesehir University (Türkiye), Institute of Mathematics and
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Boundary value problem for nonlocal half-order of loaded
ordinary linear differential equation

Bahaddin Sinsoysal1, Mahir Rasulov2, Oyku Yener3

1Istanbul Beykent University, Department of Computer Engineering, Sariyer, Istanbul,
Türkiye

2Institute of Oil and Gas of ANAS, Baku, Azerbaijan
3Istanbul Beykent University, Department of Software Development, Beylikduzu,

Istanbul, Türkiye
bahaddins@beykent.edu.tr, mresulov@gmail.com, yeneroyku@gmail.com

Abstract: This study is devoted to finding a solution to a nonlocal conditional problem
for a loaded fractal equation of half-order.

Let Q[a, b] = {0 < a < x < b} ⊂ R1 be a rectangular region defined in Euclidean space.
In Q[a, b] the following problem

(1) D
1
2
b−
y(x) − py(x) + qay(a) + qby(b) = f(x), 0 < a < x < b,

(2) αy(a) + βy(b) = 0,

is considered. Here p, qa, qb, α and β are given real constants and

D
1
2
b−
y(x) = −

d

dx

∫ b

x

(t− x)−
1
2(

− 1
2

)
!
y(t)dt.

Using the fundamental solution of the equation without loads, the so-called as a main
relation consisting of two part was obtained. The first of which expression gives an arbitrary
solution to equation (1), and the second part gives the necessary conditions that must be
satisfied between this solution and the values that the solution takes on the boundary. Finding
the boundary values of the solution from the obtained necessary conditions and substituting
them into the expression in the first part of the main relation, we obtain an expression for the
main solution to problem (1), (2).

Keywords: Half-order of loaded fractal equation, fundamental solution, basic relation and
necessary condition

2020 Mathematics Subject Classification: 34A08, 34B05

References:

[1] Aliyev, N., Rasulov, M., Sinsoysal, B. The Boundary Problem for an Ordinary Linear
Half-Order Differential Equation, Bulletin of the Karaganda University-Mathematics
vol 115 no.3, pp. 5-12, 2024, special isssue ”Actual Problems in Analysis and Applied
Mathematics

[2] Kilbas, A.A., Marichev, O.I., Samko, S.G. (1993). Fractional integrals and derivatives
(theory and applications). Gordon and Breach Science Publishers.

Bahcesehir University (Türkiye), Institute of Mathematics and
Mathematical Modeling (Kazakhstan), Ghent University (Belgium)
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The second order absolute stable difference scheme for
semi-linear delay parabolic differential equation with

Robin condition
Allaberen Ashyralyev1, Deniz Agirseven2

1 Department of Mathematics, Bahcesehir University, 34353, Istanbul, Turkiye, and

Institute of Mathematics and Mathematical Modeling, Kazakhstan, and

Peoples’ Friendship University of Russia,Moscow,Russia

aallaberen@gmail.com
2 Department of Mathematics, Trakya University, Edirne, Turkiye

denizagirseven@gmail.com

Abstract: In this work, we establish the stability theorem on the semi-linear delay para-
bolic differential equation with Robin condition. The stable second order of accuracy difference
scheme in t for the approximate solution of this problem is given. Numerical results for second
order of accuracy difference scheme in t are presented and compared with the first order of
accuracy difference scheme in t.

Keywords: Delay parabolic equation, stability, Robin condition

2020 Mathematics Subject Classification: 35K20, 65M06, 65M12

References:

[1] A. Ashyralyev, D. Agirseven, S.B. Mua’zu, A note on the delay nonlinear parabolic

differential equations, Filomat, 38(16), 5761–5778, 2024.

[2] A. Ashyralyev, S.B. Mua’zu, Bounded solutions of semi-linear parabolic differential
equations with unbounded delay terms, Mathematics, vol. 1, 5470 (14 pp.), 2023.

[3] A. Ashyralyev, D. Agirseven, B. Ceylan, Bounded solutions of delay nonlinear evo-

lutionary equations, J. Comput. Appl. Math., vol. 318 69–78, 2017.

Bahcesehir University (Türkiye), Institute of Mathematics and
Mathematical Modeling (Kazakhstan), Ghent University (Belgium)
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On positive solutions of the heat equation with a singular
potential

Bazargeldy Hudaykuliyev 1 , Gulbesher Babayev1

1 Turkmen State Institute of Finance, Turkmenistan
bazargeldyh@yandex.ru, beshermy@mail.ru

Abstract. In this paper we study the existence of nonnegative solutions of the first initial-
value problem for a linear heat equation with a singular potential in the cylinder
Ω× (0, T ), where Ω ⊂ Rn(n ≥ 3) is a bounded domain with sufficiently smooth boundary ∂Ω,
containing the ball Bρ = B(0, ρ) of radius ρ, ρ ≤ 1, centered at the origin of coordinates and
T > 0. We find an exact condition on the potential ensuring the existence of a nonnegative
solution of that problem. In addition, the lower estimates for non-negative solutions of this
problem is established.

Keywords: Nonnegative solution, heat equation, singular potential, existence, lower esti-
mate.

In the cylinder Ω × (O, T ) is considered the problem of finding a non-negative function
u(x, t) :

ut − ∆u− V (x)u = 0, (x, t) ∈ Ω × (0, T ), (1)

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ), (2)

u(x, o) = u0(x), x ∈ Ω, (3)

where Ω ⊂ Rn(n ≥ 3) is a bounded domain with sufficiently smooth boundary ∂Ω, containing
the ball Bρ = B(0, ρ) of radius ρ (ρ ≤ 1) centered at the origin O, x = (x1, ..., xn) and ∆ is
a standard Laplacian and T > 0.

By a solution of equation (1) we mean a nonnegative generalized function (distribution)

u ∈ D′(Ω × (0, T )) such that V u ∈ L1
loc(Ω × (0, T )).

Condition (3) holds in the sense of

ess lim
t→+0

∫
Ω

u(x, t)η(x)dx =

∫
Ω

u0(x)η(x)dx

for any function η ∈ D(Ω) = C∞
0 (Ω).

It is assumed that 0 ≤ V ∈ L1
loc(Ω) and 0 ≤ u0 ∈ L2(Ω).

Let us introduce the polar coordinates (r, ω), r = |x|, ω = (ω1, ω2, · · · , ωn−1), centered at
the origin. For a radial function the Laplace operator in polar coordinates is of the form

∆ =
∂2

∂r2
+
n− 1

r
·
∂

∂r
.

Let φ(x) > 0 be a radial function singular at zero O such that ∆φ ∈ L1
loc(Ω) and for any

function υ ∈ C1
0 (Ω) the weighted Sobolev estimate(∫

Ω

|υ|qφ2
dx

)2/q

≤ Const ·
∫
Ω

(
|∇υ|2 + υ

2)
φ

2
dx (4)

holds for some q > 2. Set

V0(x) = −
∆φ

φ
, x ∈ Bρ, V (x) ∈ L

∞
(Ω \ Bρ).

In this paper is analyzed the behavior of nonnegative solutions of problem (1) - (3) in the
neighborhood of zero O and is proved that if 0 ≤ V (x) ≤ V0(x) in Bρ, then this problem has

a non-negative solution for any nonnegative initial function u0 ∈ L2(Ω) and is established
lower estimates for non-negative solutions of this problem.

The main results of the paper is the following theorems:

Theorem 1. Let the (measurable) potential V (x) ≥ 0 satisfy V (x) ∈ L∞(Ω \ Bρ) and

V0(x) = −∆φ/φ in Bρ, where the function φ(x) > 0 such that ∆φ ∈ L1
loc(Ω) and the

inequality (4) holds. If 0 ≤ V (x) ≤ V0(x) in Bρ, then problem (1) - (3) has a nonnegative

solution for any nonnegative initial function u0 ∈ L2(Ω).

Theorem 2. Let V (x) ≥ V0(x) and u0(x) > 0 in Ω × (0, ε) for each ε ∈ (0, T ). Then
given subdomain 0 ∈ Ω′ ⊂⊂ Ω there is a constant C = C(ε,Ω′) > 0 such that for almost
all (x, t) ∈ Ω′ × [ε, T ) the following inequality holds

u(x, t) ≥ Cφ(x) > 0.

Bahcesehir University (Türkiye), Institute of Mathematics and
Mathematical Modeling (Kazakhstan), Ghent University (Belgium)
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Abstract: Let D be a convex bounded domain in the direction of x2, ∂D = Γ is a Lyapunov
curve. Consider the following problem in the domain D:

(1) ux2 (x) +
√
−1ux1 (x) = a(x)u(x) + f(x), x ∈ D,

(2) α1(x1)u (x1, γ1(x1)) + α2(x1)u (x1, γ2(x1)) = φ(x1), x1 ∈ [a1, b1].

Here a(x), f(x), α1(x1), α2(x1) and φ(x1) are known continuously functions.

Using of the fundamental solution of the main part of equation (1), the basic expression
consisting of a two-part is found. The first part of which gives an any solution of equation
(1) in the domain D if ξ ∈ D, but the second part gives necessary conditions for relations
between obtained solution with boundary conditions for ξ ∈ Γ.

Theorem 1. Let the D be a bounded convex domain in the x2 direction and Γ is a
Lyapunov curve, if a(x), f(x) are continuous, α1(x1), α2(x1) belong to the Hölder class, and

φ(x1) satisfies the following conditions φ(a1) = φ(b1) = 0, φ(x1) ∈ C(1)[a1, b1] then the
solution of problem (1), (2 is a regular function and has Fredholm properties.

Keywords: Cauchy-Riemann equation, nonlocal boundary condition, basic relation, neces-
sary conditions, Fredholm property
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Toward a new phase of development of the theory
differential and integral
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Abstract: In this work, the new approach for concept to the as multiplicative derivative as
well of multiplicative integral are proposed as follows

(1) f
[′]

(x) = lim
h→0

h

√
f(x+ h)

f(x)
, lim

|∆xk|→0,
n→∞

n∏
k=1

f(xk)
∆xk =

∫ ∫ b
a

f(x)
dx
.

This terminology was first used by Volterra. The discrete analogue of these new operations
made it possible to create an axiomatic theory of many problems of discrete mathematics.
For example, the Fibonacci sequence pn+2 = pn + pn+1, n ≥ 0, p0 = α, p1 = β in discrete
mathematics, in terms of the proposed additive derivative is reduced to the Cauchy problem

p[
′′]
n + p[

′]
n − pn = 0, n ≥ 0, p0 = α, p1 = β. Further by using the concept of exponentiation

from the left side the concept of powerative integral is obtained as

(2)

∫ ↙
∫x0 dx

l

f(x) = lim
|∆xk|→0,
n→∞

∆xnf(xn)
∆xn−1f(xn−1)...

∆x1f(x1)
∆x0f(x0)

.

Here, exponentiation from the left side is defined as mx↙ = xxx..
x

↙ that is calculation
draw from above to down.

The inverse of operation of the powerative integral, that is powerative derivative, is ex-
pressed as the root of the root with from left side form class continuous functions is designated
as the follows

(3) lim
h→0

h↙
√

f(x)
√
f(x+ h) = f

{′}
(x).

Keywords: Discrete mathematics, multiplicative derivative and integral, poweratrive deriv-
ative and integral
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Itô-Malliavin type equations and application to finance
Jun Fan1, Youssef El-Khatib2

1 University of Nottingham Ningbo China

Jun.Fan@nottingham.edu.cn
2 United Arab Emirates University, UAE

youssef elkhatib@uaeu.ac.ae

Abstract: Let Xu be an unknown Fu adapted Gaussian process and Xu ∈ D1,2. Let
F be a known function with respect to the time t, u, the Fu adapted Wiener processes Wu

and the process Xu. Additionally, F is continuously differentiable with respect to t, u and
second-order continuously differentiable with respect to Wu, Xu. Let Dt be the Malliavin
derivative operator. Then, equations which have the form of

DtXu = F (t, u,Wu, Xu) · 1u>t

are called Itô-Malliavin type equations. Notice that u > t is the only case considered here
since DtXu = 0 for all Fu adapted Gaussian processes Xu when u < t.

In this paper, we introduce a special type of SDE (stochastic differential equation) driven
by the Malliavin derivative operator and the Itô integral, which are called Itô-Malliavin type
equations. Four types of Itô-Malliavin type equations and a corresponding Stratonovich-
Malliavin type equation are solved here by some general methods. We also illustrate some
specific examples of every Itô-Malliavin type equation such as the geometric Brownian motion,
the Ornstein-Uhlenbeck process, the Brownian bridge, and the Bessel process. Some typical
properties of these solutions are shown as well. Furthermore, a higher order Itô-Malliavin
type equation is discussed as an extension of the Itô-Malliavin type equation. Applications to
finance, such as computations of price sensitivities and hedging, are also considered.

Keywords: Stroock lemma, stochastic differential equations, Itô-Malliavin type equations,
Stratonovich-Malliavin type equations, geometric Brownian motion; Ornstein-Uhlenbeck pro-
cess, Brownian bridge, Bessel process
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Abstract: In this paper, we develop kernel-based estimators for regression functions
under a functional single-index model, applied to censored time series data. By capitalizing
on the single-index structure, we reduce the dimensionality of the covariate-response relation
ship, thereby preserving the ability to capture intricate dependencies while maintaining a
relatively parsimonious form. Specifically, our framework utilizes nonparametric kernel esti-
mation within a quasi-association setting to characterize the underlying relationships. Under
mild regularity conditions, we demonstrate that these estimators attain asymptotic normality

Keywords:kernel regression estimation; weak dependence data; quasi-associated variables;
single functional index model.
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Numerical Solution of semi-linear delay parabolic
differential equation with Robin condition
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Abstract: In this work, we consider the well-posedness theorem on the semi-linear delay
parabolic differential equation with Robin condition. The stable difference scheme for the
approximate solution of this problem is presented. Numerical results are given.

Keywords: Delay parabolic equation, stability, Robin condition
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Abstract: We consider the second order differential operator Ax defined by

A
x
u = − (a(x)ux(x))x + σu(x), σ ≥ 0, x ∈ R

with domain

D =

{
u : u, u

′′ ∈ C(R), u(x) = u(x+ 2π), x ∈ R,
∫ 2π

0

(a(x)ux(x))xdx = 0

}
.

Here, a(x) = a(x + 2π), x ∈ R and a(x) ≥ a0 > 0 is continuously differentiable function
defined on R.

We obtain the estimates for the Green’s function. We also prove that for any α ∈ (0, 1
2 ),

the norms in the spaces Eα = Eα(C̊ (R) , Ax) and C̊2α (R) are equivalent. Furthermore,

we prove the positivity of the operator Ax in Hölder spaces of C̊2α (R) , α ∈ (0, 1
2 ). In the

applications, we establish theorems on well-posedness of local and nonlocal boundary value
problems for elliptic equations in the Hölder spaces. (see, [1], [2]).

Keywords: Positivity of differential operators, periodic boundary conditions, boundary value
problems, Green’s function
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[2] F.S. Tetikoğlu, Fractional Spaces Generated by Positive Differential and Difference
Operators with Periodic Conditions and Their Applications, PhD Thesis, Istanbul
University, Istanbul, Turkiye, (2015).

Bahcesehir University (Türkiye), Institute of Mathematics and
Mathematical Modeling (Kazakhstan), Ghent University (Belgium)



22 International Mathematical Conference FAIA 2025
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Abstract: In this study, the second order differential operator Ax defined by

A
x
(u) = −(a(x)ux)x + σu(x), σ > 0, 0 < x < 1

with domain
u(0) = 0, ux(0) = ux(1) + µu(1),

where µ > 0, a(0) = a(1) and a(x) ⩾ a0 > 0 is continuously differentiable function defined
on [0, 1].

Estimates for the Green’s function are established. It is also proved that for each θ ∈
(0, 1

2 ), the interpolation space Bθ(C̊[0, 1], Ax) and the Hölder space C̊2θ[0, 1] are topologically

equivalent. Moreover, the positivity of the operator Ax in Hölder spaces of C̊2θ[0, 1], θ ∈ (0, 1
2 )

is proved. In applications, the theorems on well-posedness of local and nonlocal boundary
value problems for paroabolic equations in the Hölder spaces are established. (see, [1], [2]).

Keywords: Positivity of differential operators, periodic boundary conditions, boundary value
problems, Green’s function
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Abstract: This report is devoted to the existence and nonexistence of global weak solutions
to the inhomogeneous semilinear heat equations with forcing terms on exterior domains

(1)

{
ut + ∆2u = |u|p + f(x), in Dc × (0,∞),
u(x, 0) = u0(x), in Dc,

where p > 1 is a constant, ∆ is the Laplace operator, and D = B1 is the closed unit ball, and

Dc is its complement in RN .

We investigate the critical behavior of solutions to the semilinear biharmonic heat equation
with forcing term f(x), under six homogeneous boundary conditions. By employing a method
of test function, we derive the critical exponents pCrit in the sense of Fujita. Moreover, we
show that pCrit = ∞ if N = 2, 3, 4 and pCrit = N

N−4 if N ≥ 5. The impact of the forcing

term on the critical behavior of the problem is also of interest, and thus a second critical
exponent in the sense of Lee-Ni, depending on the forcing term is introduced. We also discuss
the case f ≡ 0, and present the finite-time blow-up results for the subcritical and critical
cases.
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Abstract The aim of current work is to study stability aspects of the Rothe difference scheme
for approximate solving of source identification problem for reverse parabolic equation with
the initial and nonlocal conditions

(1)



dv(t)
dt − Av(t) = p+ f(t), 0 < t < 1 ,

v(0) = φ,

v(1) =
l∑

k=1

µkv(γk) + ψ

for given functiıon f : [0, 1] → H and elements φ, ψ ∈ H. Here A : H → H is a self-adjoint
positive definite operator in an arbitrary Hilbert space H and γk, µk, k = 1, ..., r are known
real numbers such that

(2)

r∑
k=1

|µk| < 1, 0 ≤ γ1 < γ2 < ... < γr < 1

Wellposedness of source identification problem was established in [1]. Rothe difference
scheme for the direct reverse parabolic problem with integral boundary condition was inves-
tigated in [2].

This research was funded by the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan (Grant No. AP19676663).

Keywords: difference scheme, inverse problem, source identification problem, well-posedness,
stability estimate, reverse parabolic equation
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On inhomogeneous exterior Robin problems with critical
nonlinearities
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Abstract: The paper studies the large-time behavior of solutions to the Robin problem
for PDEs with critical nonlinearities. For the considered problems, nonexistence results are
obtained, which complements the interesting recent results by Ikeda et al. [1], where critical
cases were left open. Moreover, our results provide partially answers to some other open
questions previously posed by Zhang [2].

This research was funded by the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan (Grant No. AP26195417).

Keywords: inhomogeneous Robin problem, exterior domain, large-time behavior of solutions.

2020 Mathematics Subject Classification: 35K70, 35A01, 35B44

References:

[1] M. Ikeda, M. Jleli, B. Samet, On the existence and nonexistence of global solutions

for certain semilinear exterior problems with nontrivial Robin boundary conditions,

J. Differential Equations, vol. 269, no 1, 563–594, 2020.
[2] Q. S. Zhang, A general blow-up result on nonlinear boundary-value problems on

exterior domains, Proc. Roy. Soc. Edinburgh Sect. A., vol. 131, no 2, 451–475, 2001.

Bahcesehir University (Türkiye), Institute of Mathematics and
Mathematical Modeling (Kazakhstan), Ghent University (Belgium)



26 International Mathematical Conference FAIA 2025

A dynamical systems approach to inflammation-driven
hematopoietic disruption: feedback mechanisms and

malignant transition
Yusuf Jamilu Umar1, Symeon savvopoulos2, Haralampos Hatzikirou3

1,2,3 Khalifa University,Abu Dhabi, UAE,

1100060967@ku.ac.ae, 2symeon.savvopoulos@ku.ac.ae, 3haralampos.hatzikirou@ku.ac.ae

Abstract: Chronic inflammation disrupts hematopoietic homeostasis, promoting aberrant
myelopoiesis and clonal expansion of mutated stem cells. To unravel the interplay between
local (intrinsic bone marrow) and global (systemic) inflammatory feedback in this process, we
propose a mathematical model formulated as a system of nonlinear differential equations:

dS

dt
= (2p0 − 1)Sv0(1)

dP

dt
= 2(1 − p0)Sv0 + (2p1 − 1)v1P(2)

dD

dt
= 2(1 − p1)Pv1 − d(I)D(3)

dI

dt
= ad(I)D − d1I(4)

dIBM

dt
= βI − d2IBM(5)

This framework captures the nonlinear dynamics of stem cell self-renewal (S), progenitor
proliferation (P ), and inflammatory signaling (I,IBM), enabling classification of healthy,
myelodysplastic, and leukemic states through phase-space analysis. We demonstrate that
global feedback enhances hematopoietic resilience at moderate levels, whereas chronic inflam-
mation destabilizes the system by biasing progenitor differentiation, fostering clonal domi-
nance. Sensitivity analysis reveals critical thresholds at which feedback loops drive transi-
tions between physiological and pathological regimes, illustrating how mutated clones exploit
inflammatory niches.

We acknowledge Volkswagenstiftung for its support of the ”Life?” program (96732). We
also acknowledge the support of the RIG-2023-051 grant from Khalifa University. Finally, we
would like to thank the support of the UAE-NIH Collaborative Research grant AJF-NIH-25-
KU.
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Abstract: We develop a general framework for quasi-synchronization in chaotic fractional-
order neural networks using impulsive state-feedback controllers that incorporate both real-
time and delayed error terms. These controllers are applied at fixed impulsive moments to
drive the synchronization error into an ϵ-neighborhood of the origin. By combining the frac-
tional Halanay inequality, a generalized Gronwall bound, and Lyapunov methods, we derive
Mittag-Leffler function-constrained conditions that guarantee bounded error convergence in
several FONN architectures—recurrent, inertial, and reaction-diffusion. These results are sup-
ported by numerical simulations conducted for the corresponding FONN models. Finally, we
apply the proposed quasi-synchronization schemes—across various FONN models and con-
trol strategies—to an image encryption task, evaluating their performance under a common
chaotic encoding algorithm. The results are contrasted with those obtained under finite-time
synchronization, revealing critical differences in synchronization behavior and their practical
implications for secure image transmission.
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Keywords: Fractional-order neural networks, quasi-synchronization, impulsive control, Lya-
punov function approach, Mittag-Leffler function, image encryption.

2020 Mathematics Subject Classification: 34A08, 93D05, 35R11, 93C95, 94A08

Bahcesehir University (Türkiye), Institute of Mathematics and
Mathematical Modeling (Kazakhstan), Ghent University (Belgium)



28 International Mathematical Conference FAIA 2025

The quadratic B-spline method for approximating a
system of Volterra integro fractional-differential equations

utilizing both classical and fractional derivatives
Diar Khalid1,∗, Shazad Shawki1, Karwan Hama-Faraj1

1College of Science, University of Sulaimani, Sulaimanyah, Iraq

∗Diar.abdullah@univsul.edu.iq
Shazad.ahmed@univsul.edu.iq
karwan.jwamer@univsul.edu.iq

Abstract: The quadratic B-spline method is a widely recognized numerical technique for
solving systems of Volterra integro-differential equations that involve both classical and frac-
tional derivatives (SVIDE’s-CF). This study presents an improved application of the quadratic
B-spline approach to achieve highly accurate and computationally efficient solutions. In the
method developed in this paper, control points are treated as unknown variables within the

framework of the approximate solution. The fractional derivative C
a Dσ

x is considered in the
Caputo sense. First, we divide the domain into subintervals, then construct quadratic B-spline
basis functions over each sub-interval. The approximate solution is presented as a quadratic
combination of these B-spline functions over each sub-interval, where the control points act
as variables. To simplify the system of (VIDE’s-CF) into a solvable set of algebraic equations,
the collocation method is applied by discretizing the equations at chosen points within each
subinterval. The Jacobian matrix method is employed to perform computations efficiently.In
addition, a careful, step-by-step algorithm for employing the proposed method is presented
to simplify its use, we implemented the method in a Python program and optimized it for
efficiency. Experimental example effectiveness and accuracy of the proposed technique and its
comparison with present techniques in terms of accuracy and computational efficiency. This
study presents an approximate method for solving the linear system associated with Volterra
integro-differential equations, encompassing classical and fractional orders (LSVIDE’s-CF).
For the derivation, it deals with quadratic B-spline interpolation functions. Which takes the
following general forms:

(1) Pi(x)U ′′
i (x) + ai0(x)

C
a Dσi0

x Ui(x) + ai1(x)
C
a Dσi1

x Ui(x) + ai2(x)Ui(x)

= Fi(x) +

m∑
j=0

ωij

∫ x

a

Kij(x, s)
C
a D

βij
s Uj(s) ds.

Under the following conditions:

(2)
[
Dki

x Ui(x)
]
x=a

= ϑiki
, ∀ki = 0, 1, . . . , µi − 1, and i = 0, 1, . . . ,m.

The variable coefficients Pi(x)( ̸≡ 0), ai0(x) and ai1(x) ∈ C([a, b],R) and Kij ∈ C(Θ,R), Θ =
{(x, s) : a ≤ x < s ≤ b}, for each i, j = 0, 1, . . . ,m, with fractional orders: σi1 > σi0 > 0 and
βim > βi(m−1) > · · · > βi1 > βi0 = 0, and for all i, j = 0, 1, . . . ,m. Furthermore, the µi =

max
{
2,mβ

im

}
for all i = 0, 1, . . . ,m, where mβ

ij − 1 < βij ≤ mβ
ij ,m

β
ij = ⌈βij⌉ , ωij ∈ R also

for all i, j = 0, 1, . . . ,m.

Keywords: Volterra integro-fractional differential equation (VIDE’s), Quadratic B-spline
functions, Caputo fractional derivative, Collocation method, Jacobian matrix algorithm, Clenshaw-
Curtis quadrature rule.
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Nonparametric estimation of distribution function:
two-measurement problem
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Abstract: We propose a new plug-in estimator for the distribution function of two inde-
pendent but heterogeneously distributed random variables, where one has a density and the
other only has a distribution. Contrary to the extant literature, no restrictive assumption
is imposed on the distribution function, and only mild smoothness conditions are imposed
on the density. We show that the proposed estimator is asymptotically unbiased. Our work
has broad applications, in particular in medicine, where for a number of variables of inter-
est, it is often advisable to construct values that are averages of two independently obtained
measurements.

Previous results include W. Kordecki, A. Saavedra and R. Cao, G. E. Willmot, G. E. and
J-K Woo, C. Chesnau, F. Comte and F. Navarro, K. S. Trivedi, N. N. Midhu, I. Dewan, K.
K. Sudheesh and E. P. Sreedevi. Some techniques from [1] are used.

This research was funded by the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan (Grant No. AP19676673).
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On the spectral stability of the generalized biharmonic
Steklov problem
Bauyrzhan Derbissaly1
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Abstract: This report is devoted to study the spectral stability of a natural biharmonic
Steklov problem when the domain undergoes perturbations. We establish sharp conditions on
boundary variations that guarantee the stability of both eigenvalues and eigenfunctions.

To demonstrate the sharpness of these conditions, we explore alternative types of boundary
perturbations which result either in spectral degeneration or in the emergence of a strange term
in the limiting problem. Specifically, we examine these effects in the context of a boundary
homogenization problem, which displays a trichotomy in its asymptotic behavior.

This research was funded by the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan (Grant No. AP26194963).

Keywords: Steklov boundary conditions, multi-parameter eigenvalue problems, biharmonic
Steklov eigenvalues, domain perturbations, spectral stability
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Examples of 3D gl-regular Nijenhuis operators
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Abstract: Nijenhuis operator fields with vanishing Nijenhuis torsion naturally appear
in various areas of differential geometry, algebra, and mathematical physics. They often
encode compatibility conditions for systems of partial differential equations. Among such
structures, a special role is played by gl-regular (algebraically stable) Nijenhuis operators,
whose classification forms a central problem in the theory of Nijenhuis Geometry.

A complete classification of gl-regular Nijenhuis operators in dimension two was obtained
by A. Bolsinov, V. Matveev, and A. Konyaev. We also arrived at this classification indepen-
dently while studying quadratic integrals of geodesic flows of pseudo-Riemannian metrics.

This talk will present examples of three-dimensional gl-regular Nijenhuis operators and
discuss the first steps toward their classification.

This research was supported by the Ministry of Science and Higher Education of the
Republic of Kazakhstan (grant No. AP23483476) and by the DFG 529233771.

Keywords: Nijenhuis tensor, Nijenhuis torsion, gl-regular operators.
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Abstract: This paper is devoted to a double nonlinear cross-wise diffusion system with

the Cauchy problem in the area Q = {(x, t) | x ∈ RN , t ∈ R+}:{
ρ1(x)∂tu = uq1vp1div

(
um1−1|∇u|p−2∇u

)
+ ρ1(x)γ1(t)v

β1

ρ1(x)∂tv = uq2vp2div
(
vm2−1|∇v|p−2∇v

)
+ ρ1(x)γ2(t)u

β2
,(1)

{
u(x, 0) = u0(x) ≥ 0

v(x, 0) = v0(x) ≥ 0
, x ∈ RN

.(2)

Here, qi, pi ̸= 1,mi > 1, p ≥ 2, βi > 1, ρ1(x) = |x|−n1 , n1 > 0, γi(t) = (Ct + C0)
−li , C >

0, C0 ≥ 0, li ∈ R, i = 1, 2 – are given numerical parameters.

We are interested in compactly supported self-similar solutions satisfying (1)-(2), in the
distribution sense. Using self-similar analysis [1], we constructed the self-similar solution with
the Barenblatt profile. Throughout this paper we mainly use techniques outlined in the work
[2]-[3].

This research was funded by the Ministry of Higher Education, Science and Innovation of
the Republic of Uzbekistan (Grant No. AL-9224104601).
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Abstract: In domain Ω ⊂ R2, bounded at y > 0 by smooth curve σ and by segment
AB : y = 0, 0 ≤ x ≤ 1, we consider the degenerate Gellerstedt equation

(1) LGu ≡ y
m
uxx + uyy = f(x, y).

Theorem 1. For any regular boundary value problem for the degenerate elliptic Gellerstedt
equation there are such functions µ and µ0 that the solution of the problem is expressed by
the formula

u(x, y) = L
−1
G f =

∫
Ω

ε(x, y, ξ, η)f(ξ, η)dξη+

(2) +

∫
Ω

 l∫
0

∂ε

∂nε

µds

 f(ξ, η)dξη +

∫
Ω

µ0f(ξ, η)dξη.

Here

ε(x, y, ξ, η) = k ·
(
r
2
1

)−β
(1 − σ)

1−2β
F (1 − β, 1 − β; 2 − 2β; 1 − σ)

- a fundamental solution of (1) equation,

β =
1

2(m+ 2)
, k =

(
4

m+ 2

)4β−2

·
Γ(β)

Γ(1 − β) · Γ(2β)
, σ =

r2

r21
,

r
2
= (x− ξ)

2
+

4

(m+ 2)2

(
y

m+2
2 − η

m+2
2

)2

,

r
2
1 = (x− ξ)

2
+

4

(m+ 2)2

(
y

m+2
2 + η

m+2
2

)2

,

F (a, b; c; z) - hypergeometric function; Γ(z) - gamma-function.

The criterion (necessary and sufficient condition) that the corresponding problem is a
boundary value problem or problem with inner-boundary conditions have been also estab-
lished.

The proof is based on the properties of the potentials of the simple and double layers
described above, the properties of special functions, Green’s formula and Riesz’s theorem.

This research was funded by the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan (Grant No. AP23488701).
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Abstract: In this work, an inverse problem for the fractional analog of a parabolic equa-
tion with involution is studied, focusing on determining the solution and the unknown right-
hand side depending on the spatial variable. The problem with initial and boundary Dirichlet
conditions, as well as an overdetermination condition, is examined. The investigated problem
is analyzed using the Fourier method. Eigenfunctions and eigenvalues of the spectral problem
with Dirichlet conditions for the non-local analog of the Laplace operator are found. Theorems
on the existence and uniqueness of solutions to the considered problem are proved.

Similar problems in the case n = 1 were studied in [1].

This research was funded by the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan (Grant No. AP19677926).
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Abstract: In the space of solenoidal functions for domains represented by a multidimen-
sional rectangular parallelepiped, in particular, a square and a cube, an orthogonal funda-
mental system is constructed. We use the concept of a fundamental system in the sence of

Ladyzhenskaya [1]. Throughout the report, Ω = (0, l)d ⊂ Rd, d ≥ 2. We propose to consider
the following spectral problem:

d∑
k=1

∂
4
xk
U(x) = λ

2
(−∆)U(x), x ∈ Ω; U(x) = 0, ∂n⃗U(x) = 0, x ∈ ∂Ω.(1)

We use the following result established in papers [2]– [3]:

Theorem 1.1. The set of generalized eigenfunctions {un(x), n ∈ N} of the spectral problem

(1) belongs to the space
◦
W

2
2(Ω) and forms an orthogonal basis for the space

◦
W

1
2(Ω). More-

over, all eigenvalues {λ2
n}n∈N lie on the positive real half-axis, and the smallest eigenvalue

λ2
1 is strictly positive.

This research was funded by the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan (Grant No. AP26198551).

Keywords: space of solenoidal functions, fundamental system, eigenvalues, eigenfunctions,
spectral problem, curl operator, rectangular parallelepiped
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Abstract:

Problem statement

A spectral problem for a first-order differential equation with a spectral parameter in
boundary conditions with an integral perturbation of the boundary condition is considered.

(1) l(u) ≡ u
′
(t) = λu(t), 0 < x < 1,

(2) U1 ≡ u(0) − αu(1) + λ {u(0) − βu(1)} =

1∫
0

p(x)u(x)dx,

where α ̸= 0 and β ̸= 0 are given complex numbers, p(x) ∈ L2(0, 1).

Construction of the unperturbed adjoint operator

Ly⃗ = L

(
y1(x)
y2

)
=

(
y
′
1(x)

y1(0) − αy1(1)

)

D(L) =

{
y⃗ =

(
y1(x)
y2

)
∈ H, y1 ∈ W

1
2 (0, 1), y1(0) − βy1(1) − y2 = 0

}

L
∗
v⃗ = L

∗
(
v1(x)
v2

)
=

( −v′1(x)
1

1−β̄
[v1(1) − v1(0)] +

1−ᾱ
1−β̄

v2

)
D(L

∗
) =

{
v⃗ ∈ H : v1(x) ∈ W

1
2 (0, 1), β̄ v1(0) − v1(1) + (ᾱ− β̄)v2 = 0

}
We have proved that ⟨Ly⃗, v⃗⟩H − ⟨y⃗, L∗v⃗⟩H = 0 , for y⃗ ∈ D(L), v⃗ ∈ D(L∗).

This research was funded by the Science Committee of the Ministry of Science and Higher
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Abstract: The abstract nonlocal boundary value problem{
ε2u

′′
(t) + Au(t) = f(t), 0 < t < T,

u(0) = αu(T ) + φ, u
′
(0) = βu

′
(T ) + ψ

for hyperbolic equations in a Hilbert space H with the self adjoint positive definite operator A
and with an arbitrary ε ∈ (0,∞) parameter multiplying the derivative term is considered. An
asymptotic formula for the solution of this problem with a small ε parameter is established.
The high order of accuracy two-step uniform difference schemes for the solution of this problem
are presented. The convergence estimates for the solution of these difference schemes are
established.

Keywords: Hyperbolic perturbation problems, asymptotic formulas, uniform difference schemes.
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Let k ∈ Z, Gk = [0, 2k)n + 2km, m ∈ Zn. G =
⋃

k∈Z
Gk, Q ∈ Gk. The set of mutually

disjoint cubes T = {Q} ⊂ G is called a local partition of the space Rn if Rn =
⊔

Q∈T
Q and

|T ∩Gk| < ∞.

Let n̄ = (n1, ..., nd): ni ∈ N, |n| = n1 + · · · + nd, k̄ = (k1, ..., kd): ki ∈ Z. Denote
Gk̄ = {Q = Q1 × · · · × Qd : Qi ⊂ Gki

, i = 1, ..., d} . Mutually disjoint cubes Ti =

{Qi} ⊂ Gki
are called local partitions of the space Rni , the set T1, . . . ,Td - local partitions

of the spaces Rn1 , . . . ,Rnd respectively. Family of mutually non-intersecting parallelepipeds
T = T1 × · · · × Td = {Q = Q1 × · · · × Qd : Qi ⊂ Ti, i = 1, ..., d} will be called a local

partition of the space R|n̄|.

Let p̄ = (p1, ..., pd), q̄ = (q1, ..., qd), λ̄ = (λ1, ..., λd) such that 0 < pi ≤ ∞, 0 < qi ≤
∞, −∞ < λi < ∞. We define an anisotropic local Morrey space LM λ̄

p̄,q̄(T) as the set of

measurable functions f for which

∥f∥
LMλ̄

p̄,q̄(T)
=

∑
kd∈Z

. . .

∑
k1∈Z

2
−⟨k̄,λ̄⟩ ∑

Q∈Tk̄

∥f∥Lp̄(Q)

q1


q2
q1

· · ·


1
qd

< ∞.

The anisotropic classical Morrey space M λ̄
p̄ is the set of Lebesgue measurable functions

f ∈ Lloc
p̄ (Rn̄) for which

∥f∥
Mλ̄

p̄
=
∑
kd∈Z

. . .
∑
k1∈Z

(
2
⟨−k̄,λ̄⟩

sup
Q∈Gk̄

∥f∥Lp̄(Q)

)
< ∞,

here ⟨k̄, λ̄⟩ = k1λ1 + · · · + kdλd.

Consider the convolution operator

(Tf)(x) = (K ∗ f)(x) =

∫
Rd

K(x− y)f(y)dy,

acting from one Morrey space to another Morrey space.

Theorem. Let T be some local partition of the space R|n|. Let 0 < max(q̄, 1) ≤ p ≤ ∞,
0 < λ̄ < n̄

q̄ and 0 ≤ γ̄ ≤ n̄
p , 0 < ᾱ = γ̄ − λ̄+ n̄

q̄ < n̄
p .

If f ∈ M γ̄
p and g ∈ LM−ᾱ

p′,∞̄(T), then f ∗ g ∈ M λ̄
q̄ and the inequality

∥f ∗ g∥
Mλ̄

q̄
< c∥f∥

M
γ̄
p
∥g∥

LM
−ᾱ
p′,∞̄

(T)
,

where the constant c depends only on the parameters n̄, λ̄, q̄, ᾱ, p.
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Abstract: On a bounded domain Ω ⊂ Rn with smooth boundary ∂Ω, we consider the Neu-
mann problem for the Laplace equation:

(1) −∆xu = 0, x ∈ Ω.

(2)
∂u

∂nx

∣∣∣∣
x∈∂Ω

= ν(x).

It is well known that the problem (1)–(2) is solvable if and only if

(3)

∫
∂Ω

ν(x) dSx = 0, ν(x) =
∂u

∂nx

.

It is natural to ask under what condition the solution of the problem (1)–(2) can be represented
in an exact form.

The following holds:

Theorem 1.2. Let

(4) ν(x) = −
µ(x)

2
+

∫
∂Ω

∂εn(x, y)

∂ny

µ(y) dSy, µ(x) ∈ C
1+α

(∂Ω),

and

(5)

∫
∂Ω

(
−

1

2
+

∫
∂Ω

∂εn(x, y)

∂ny

dSy

)
µ(x) dSx = 0,

then the solution of the problem (1)–(2) has the following form:

(6) u(x) =

∫
∂Ω

εn(x, y)µ(y) dSy,

where

(7) εn(x, y) =

− 1
2π ln |x− y|, n = 2,

1
ωn(n−2)

1

|x−y|n−2 , n ≥ 3.

Remark 1.3. The Theorem above is also valid for the general uniform elliptic equation

(8) Lu = −
n∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+ c(x)u = 0,

where

aij = aji;

n∑
i,j=1

aij(x)ξiξj ≥ δ

n∑
i=1

ξ
2
i , ∀ξ =∈ R

n
, δ > 0.
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Abstract: In a real Hilbert space H with norm ∥�∥ consider the problem

(1) −y′′(x) + αy
′′
(−x) + ρ

2
y (x) + f (x, y (x) , y (−x)) = h (x) , −1 < x < 1,

(2) y (−1) = 0, y (1) = 0.

Here y (x) is the unknown function with values in a real Hilbert space H and h (x) :
(−1, 1) →H, f (x, y, z) : (−1, 1) ×H ×H → H, ρ > 0, −1 < α < 1. The derivative y′′(x) is
understood as the limit in the norm of H. If H = R, then the scalar homogeneous problem

−y′′(x) + αy
′′
(−x) + ρ

2
y (x) = 0

has the Green function.

Theorem. Let
1) f (x, y, z) : (−1, 1) ×H ×H → H be completely continuous.

2) There exist real positive numbers a, b, a+ b < ρ2 such that

(f (x, y, z) , y) ≥ −a∥y∥2 − b ∥y∥ ∥z∥
for all (x, y, z) ∈ (−1, 1)×H×H. Then the boundary value problem (1), (2) has at least one
solution for every h (x) ∈ L1 ((−1, 1) , H) .

In the case H = R the solvability theorems proved in other our work.
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a system of first-order stochastic differential equations

with degenerate diffusion
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Abstract: The problem of constructing a system of first-order Itô stochastic differential
equations by the given properties of motion is considered.

Let the set

(1) Λ(t) : λ(x, y, t) = 0, λ ∈ R
m
, λ = λ(x, y, t) ∈ C

221
xyt

be given. It is required to construct the equations of motion for the class of first-order Itô
stochastic differential equations with degenerate diffusion

(2)

{
ẋ = f1(x, y, t)

ẏ = f2(x, y, t) + σ(x, y, t)ξ̇

such that the set (1) is the integral manifold of system (2). Here x ∈ Rn1 , y ∈ Rn2 , n1+n2 =

n, ξ ∈ Rk, and σ(x, y, t) is a (n×k)-matrix; {ξ1(t, ω), ..., ξk(t, ω)} is a system of independent
Wiener processes [1] defined on some probability space .

Necessary and sufficient conditions for the existence of a given integral manifold of the
constructed equation are obtained in terms of the equation’s coefficients. These conditions
are derived separately for two cases: when the manifold depends on all independent variables
and when it depends only on a subset of them.
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Keywords: Stochastic differential equations, integral manifold, inverse problem, degenerate
diffusion

2020 Mathematics Subject Classification: 60Gxx, 34A55

References:

[1] Pugachev V.S., Sinitsyn I.N. Stochastic Differential Systems. Analysis and Filtering,

Wiley, 1987.

Bahcesehir University (Türkiye), Institute of Mathematics and
Mathematical Modeling (Kazakhstan), Ghent University (Belgium)



44 International Mathematical Conference FAIA 2025

Analysis and classification of fixed points of operators on
a simplex

Dilfuza Eshmamatova1,2, Mohbonu Tadzhieva3, Kamola Solijanova4

1 Tashkent State Transport University

2 V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent,
Uzbekistan

24dil@mail.ru
3 Tashkent State Transport University, Tashkent, Uzbekistan

mohbonut@mail.ru
4 Tashkent State Transport University, Tashkent, Uzbekistan

kamolasolijanova@gmail.com

Abstract: This report investigates the dynamical behavior of Lotka-Volterra type operators
defined on the four-dimensional simplex, with a particular focus on fixed points and their
structural representation via directed graphs (tournaments). Let the operator V : S4 → S4

be defined by the system

(1) x
′
k = xk(1 +

5∑
i=1

akixi), k = 1, . . . , 5,

where aki = −aik, xi ≥ 0,
5∑

i=1
xi = 1 and ∆i are the fourth-order principal minors of the skew

symmetric matrix A = (aij). We consider operators corresponding to tournaments preserving
hamiltonian cycles of orders 3, 4, and 5. Using methods from algebraic graph theory, Youngs
inequality, and Lyapunov function analysis, we establish explicit criteria for the existence and
stability of interior fixed points. If ∆1, ∆2, ∆3, ∆4 < 0 and ∆5 > 0 then the operator has
at least one internal fixed point x∗ ∈ int(S4). If at least three of the values ∆i are positive,
then there are not internal fixed points.

Throughout this note we mainly use techniques from our work [1].

Keywords: Lotka-Volterra operator, simplex dynamics, fixed points, directed graphs, tour-
naments, cyclic structures, Lyapunov function.
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Abstract: This report investigates a class of discrete LotkaVolterra operators defined on
a five-dimensional simplex, specifically focusing on those associated with interaction graphs
featuring a limited number of connections: When the interaction follows a cyclic (ring) con-
figuration

1 → 2 → 3 → 4 → 5 → 6 → 1

the mapping V : S5 → S5 takes the form:

x
′
i = xi (1 + ai−1xi−1 − aixi+1) , i = 1, . . . , 6,

where the indices are taken modulo 6, i.e.,

x0 := x6, x7 := x1, a0 := a6, a7 := a1,

where 0 < a1, . . . , a6 ≤ 1.

It is established that the sets P = {x ∈ S5 : Ax ≥ 0} and Q = {x ∈ S5 : Ax ≤ 0}
are two-dimensional convex polyhedra in the simplex S5, defined as the convex hulls of three
points. Their interior (relative interior in S5) is connected, and the sets P and Q themselves
are homeomorphic to a triangle. This ensures a simple topological structure of the phase limit
sets.

The mathematical findings provide a theoretical foundation for analyzing stability, survival
strategies, and diversification processes in real-world biological systems.

Throughout this note, we mainly use techniques from our work [1].

Keywords: Discrete dynamical system, simplex, Lotka-Volterra mapping, Lyapunov func-
tions, phase space, repellers, attractors, oriented graph, polyhedra, stability, signature dy-
namics, invariant sets
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On an interpolation theorem for Lorentz spaces with
mixed metric
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Abstract: This report is devoted to an interpolation theorem for Lorentz spaces with
mixed metric.

Let 1 ≤ q̄ = (q1, q2) ≤ ∞, φ̄(t) = (φ1(t), φ2(t)) ≥ 0. Let

Λq̄(φ̄) :=

f :

(∫ +∞

0

(∫ +∞

0

(
f
∗1∗2 (t1, t2)φ1(t1)φ2(t2)

)q1 dt1
t1

) q2
q1 dt2

t2

) 1
q2

< ∞

 ,

where f∗1∗2 = f∗1∗2 (t1, t2) is the nonincreasing permutation of a function f [1]. In the paper
[2] were studied one-dimensional generalized Lorentz spaces.

Let δ > 0 and φ(t) be nonnegative function on [0,+∞). Let Cδ = {φ(t) :

φ(t)t−δ is an increasing function and φ(t)t−1+δ is a decreasing function
}
. The class C is

defined as follows: C =
⋃

δ>0 Cδ.

Theorem 1.4. Let 0 < p̄0 = (p01, p
0
2) < p̄1 = (p11, p

1
2) < ∞, 0 < q̄ = (q1, q2) ≤ ∞,

γi = 1

p0
i

− 1

p1
i

, i = 1, 2, φ1, φ2 ∈ C. Then the following inequality is true(
Lp̄0,∞, Lp̄1,∞

)
φ̄,q̄

= Λ
q̄ (
ψ̄
)
,

where ψ̄(t1, t2) =

 t

1
p10
1

φ1(t
γ1
1 )

,
t

1
p20
2

φ2(t
γ2
2 )

.
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Abstract: Let λ ∈ R, 0 < p, q ≤ ∞, and T = {Q} be a local partition of Rn. The local

Morrey space was defined by Nursultanov and Suragan LMλ
p,q(T) as the set of measurable

functions f for which

∥f∥
LMλ

p,q(T) =

∑
k∈Z

2
−kλ

∑
Q∈Tk=T∩Gk

∥f∥Lp(Q)

q 1
q

< ∞.

This paper investigates norm estimates for convolution operators in generalized local
Morrey-type spaces. Sufficient conditions for boundedness are established.

We prove Young-O’Neil-type inequalities in this setting, extending classical results to a
more general framework. The obtained inequalities provide new estimates for convolution
operators with kernels from weak Lebesgue spaces.

These results generalize known theorems for Lebesgue, Lorentz, and Morrey spaces, offer-
ing refined criteria for the boundedness of integral operators. Applications include potential
operators and singular integrals in Morrey-type spaces.

Throughout this note we mainly use techniques from [1].
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Education of the Republic of Kazakhstan (Grant No. AP23488596).

Keywords: Morry space, convolution operator, Young-O’Neil’s inequality, Riesz potential

2020 Mathematics Subject Classification: 47A05, 47B06

References:

[1] E. D. Nursultanov, D. Suragan. On the convolution operator in Morrey spaces. J.
Math. Anal. Appl., 515 (2022), 126357, 20 pages.

Bahcesehir University (Türkiye), Institute of Mathematics and
Mathematical Modeling (Kazakhstan), Ghent University (Belgium)



48 International Mathematical Conference FAIA 2025
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We obtain estimates for the norm of convolution operator in anisotropic grand Lorentz spaces.
In these spaces, we prove O’Neil type inequalities and establish the boundedness of the loga-
rithmic Riesz potential.
Theorem 1. Assume that 1 < p̄ < q̄ < ∞̄, 0 ⩽ θ̄, θ̄0, s̄, 1/r̄ = 1 + 1/q̄ − 1/p̄, 0 < τ̄ ⩽ ∞̄.
If θ̄ = s̄+ θ̄0, then

∥f ∗ g∥GLs̄
q̄,τ̄ (Ω) ≲ ∥f∥

GL
−θ̄0
p̄,τ̄ (Ω)

∥g∥
GLθ̄

r̄,∞(Ω)

∥f ∗ g∥GLs̄
q̄,τ̄ (Ω) ≲ ∥f∥

GL
θ̄0
p̄,τ̄ (Ω)

∥g∥
GLθ̄

r̄,∞(Ω)

If θ̄ = s̄− θ̄0, then

∥f ∗ g∥GLs̄
q̄,τ̄ (Ω) ≲ ∥f∥

GL
θ̄0(Ω)
p̄,τ̄

∥g∥
GLθ̄

r̄,∞[0,1]2

∥f ∗ g∥GLs̄
q̄,τ̄ [0,1]2 ≲ ∥f∥

GL
−θ̄0
p̄,τ̄ [0,1]2

∥g∥
GLθ̄

r̄,∞[0,1]2
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Abstract: This work is devoted to the study of inverse problems for pseudoparabolic equa-
tions. The distinctive feature of this research is that three different formulations of inverse
problems described by pseudoparabolic equations are considered, where the right-hand sides
depend on all independent variables, and various types of overdetermination conditions are
present. Such inverse problems have not been previously studied.

We consider, in QT = {(x, t) : x ∈ Ω, 0 < t < T}, Ω ⊂ Rn, n ≥ 1 the inverse problem of
determining the right-hand side of a pseudoparabolic equation. The task is to determine the
functions {u(x, t), f(t)g(x)} satisfying equation

(1) ut − ∆ut − ∆u−
∫ t

0

k(t− τ)∆u(τ) dτ = f(t)g(x)

the initial condition

(2) u(x, 0) = u0(x), x ∈ Ω,

the boundary condition

(3)
∂u

∂n

∣∣∣∣
∂Ω

= φ|∂Ω , ∀t ∈ [0, T ],

the final overdetermination condition

(4) u(x, T ) = u1(x), x ∈ Ω,

and the nonlocal overdetermination condition

(5)

∫
Ω

u(x, t) dx = e(t), 0 ≤ t ≤ T.

This research was funded by the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan (Grant No. AP26199323).
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existence and uniqueness of solution.
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Application of the Monge-Ampere equation to geometry
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Abstract:

In the works [1] of A.D. Alexandrov, the connection between the problems of geometry
”in the large” and the Monge-Ampère equation is indicated. Developing the idea of A.D.
Alexandrov, Bakelman proved the existence and uniqueness of the solution to the Dirichlet
problem for the elliptic Monge-Ampère equation of general type

(1) zxxzyy − z
2
xy = φ

in a convex domain D with the boundary condition:

z|∂D = f (s) , s ∈ ∂D

A key role in these works is played by the extrinsic curvature of a convex surface, defined as
the area of its spherical image. The extrinsic curvature was first defined for convex polyhedra
and obtained by limiting process for regular convex polyhedra. The entire theory of this limit
process is presented in the monographs of A.D. Alexandrov and his students. The work of A.
Artykbaev [3] is devoted to the proof of the existence and uniqueness of a convex surface with
a given extrinsic curvature in Galilean space. The solution to this problem required defining
the concept of extrinsic curvature in spaces with a degenerate metric. Therefore, in the pa-
per a general method for constructing extrinsic curvature in spaces with projective metrics is
given. The existing connection between the problem of recovering a convex surface from ex-
trinsic curvature and the Monge-Ampère equation is also preserved for non-Euclidean spaces.
Therefore, the geometric solution of the problem led to the solution of the Monge-Ampère
equation in multi-connected domains with different boundary conditions. Generalizing the
obtained results, we can state: Proposition. Problems of recovering of a convex surface

by extrinsic curvature in non-Euclidean spaces are particular solutions of the Monge-Ampère
equation. Keywords: Convex surface, extrinsic curvature, spherical mapping, projective

space, Galilean space, non-Euclidean space.
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Abstract: The problems of integral geometry consist in finding functions defined on a
certain manifold through its integrals on a certain set of submanifolds with a lower dimension.
Under sufficiently general assumptions regarding the family of curves and the weight function,
the problem of integral geometry is reduced to a boundary value problem for an equation of
mixed type. Estimates of the stability and uniqueness of the solution of discrete analogs of
this problem on the space of sufficiently smooth functions are obtained. Due to the absence of
a theorem on the existence of a solution, the concept of conditional correctness of the problem
is used in the work, namely, it is assumed that a solution to the differential-difference and
finite-difference problems exists. The proof is carried out using the method proposed in [1-3].
The results obtained can be applied to computer tomography problems.
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Stability and Hopf bifurcation analysis for a financial
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Abstract: In this study, we consider a fractional-order financial dynamical model with
time delay. We study the impact of the time delay on the stability of the model and by
choosing the delay time tau as a bifurcation parameter, we show that Hopf bifurcation can
occur as the delay time tau passes some critical values. Moreover, the local stability of a
positive equilibrium is established . Finally, we give numerical simulations to support our
theoretical results.

Keywords: Hopf bifurcation, fractional-order, time-delay, stability, finance model, numerical
simulation, predictor-corrector model
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Abstract: Let L be an operator defined in L2(0, 1)×Cs, mapping an element

(
y(x)
µ⃗

)
to the

element

(
l(y, µ⃗)

θ⃗(y, µ⃗)

)
, where

(1)



l(y, µ⃗) ≡
d2y(x)

dx2
+ φ1(x)y(0) + φ2(x)y(1) +

s∑
j=1

µjqj(x)

+ i · r1(x)
dy(x)

dx
+ i ·

dr1(x)

dx
y(x) + r0(x)y(x),

θm(y, µ⃗) ≡
∫ 1

0

y(x)Gm(x)dx+ A1my(0) + A2my(1) +

s∑
j=1

δmjµj , m = 1, ..., s.

The domain of the operator L is defined as:

(2) D(L) =

{(
y(x)
µ⃗

)
: y(x) ∈ W

2
2 [0, 1], µ⃗ ∈ Cs

∣∣∣∣ Vj(y, µ⃗) = 0, j = 1, 2.

}
.

where

(3)


V1(y, µ⃗) ≡

∫ 1

0

y(x)θ1(x)dx− y(0)B11 + y(1)B12 + y
′
(1) +

s∑
j=1

µjα1j ,

V2(y, µ⃗) ≡
∫ 1

0

y(x)θ2(x)dx− y(0)B21 + y(1)B22 + y
′
(0) +

s∑
j=1

µjα2j .

In the first part of the talk, the form of the adjoint operator L∗ is presented. Then, the
conditions under which the operator equality L = L∗ holds are identified. For such operators,

the Riesz basis property of the system of eigen-elements

(
yn(x)
µ⃗n

)
in the corresponding space

is established.

In the special case where hp(x) ≡ 0 and qj(x) ≡ 0, the adjoint operator L∗ is studied
separately. Conditions are derived under which a certain subsequence of the first components

{y∗n(x)} of the root elements

(
y∗n(x)
µ⃗∗
n

)
of the operator L∗ forms a Riesz basis in the space

L2(0, 1).
In this note, we primarily rely on the methods developed in our work [1].
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On the mathematical model of balanced sustainable
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Ensuring sustainable development of each society requires solving the problems of ensuring a
balanced, that is, a constant dynamic pace of sustainable development of economic sectors.
Digitalization of this activity, in other words, its implementation with the help of advanced
digital technologies, mainly begins with the development of economic and mathematical mod-
els of the corresponding problems. Observations show that the correlation dependence of the
total indicator of sustainable development of the industry U with indicators of the social,
environmental and economic spheres is low, that is, the modules of the correlation coefficients
of these indicators are quite small. Therefore, the dependence of U of sustainable development
on indicators U1, U2, U3 can be considered nonlinear. In this case, the nonlinear regression
equation can be sought in the following form:

(1) U = A U
α1
1 · Uα2

2 · Uα3
3

Here A is the assessment of the total impact of other unaccounted factors that may affect
the sustainable development of the industry. In the case of statistical significance of the
assessment of the parameters of the regression equation (1), it can be used to predict the
dynamics of sustainable development of the industry in the near future in the main areas.
To do this, the elasticity coefficients (E1, E2, E3) of the integral indicator U of sustainable
development of the industry from the main directions of indicators U1, U2, U3 are calculated:

(2) E1 =
∂U

∂U1

·
U1

U
= α1, E2 =

∂U

∂U2

·
U2

U
= α2, E3 =

∂U

∂U3

·
U3

U
= α3,

So, in this case, the estimates α1, α2, α3 exactly describe the elasticity coefficients E1, E2, E3.
The main advantage of expressing the sustainable development of the industry in the form
(1) is that the correct calculation of the values αi (i = 1, 2, 3) which reflect the contribution
of the main indicators U1, U2, U3 to the sustainable development of the industry, makes the
integral indicator more accurate. Using the well-known Taylor formula, we obtained the fol-
lowing formula for assessing the relative growth of sustainable development of the industry
[1]

(3)
∆U

(U)|
Ui=U0

i

≈
(

∆U1

U0
1

E1 +
∆U2

U0
2

E2 +
∆U3

U0
3

E3

)
This equality shows that the vector of elasticity coefficients (E1, E2, E3) of the index of eco-
nomic, social and environmental components of the economic sector serves as a normative
vector of relative growth in relation to its components. Also, formula (2) connects the relative
growth of sustainable growth of the economic sector with the relative growth of its compo-
nents. Therefore, with its help, it is possible to describe and analyze various situations of
sustainable development of the economic sector. In particular, the condition of stability of
relative development can be considered as the main condition of sustainable development of
the industry:

∆U

(U)|
Ui=U0

i

= const > 0 ↔
(

∆U1

U0
1

E1 +
∆U2

U0
2

E2 +
∆U3

U0
3

E3

)
= const > 0.

The fulfillment of condition (4) determines that the sustainable development of the economic
sector depends on the relative development of its components. It also makes it possible to
determine the state of sustainable development of the industry and its balance with its com-
ponents. Therefore, condition (4) can be considered as a condition of stability of sustainable
development of the industry.
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Abstract: In this work, we introduce a model of a nonlocal partial differential equation
with a deviated function in the boundary condition. The finite diffrence method with a vari-
able space gride is applied to construct the numirical solution of our problem. The stability
of the approximat solution is investigate by using Von-Neumann method.
The results of numirical expriments are presented, and are compared with analytical solution
and are found to be in good argeement with each other.It is shown that the numirical solutions
expected convergence to the exact one as the mesh size is reduced.

Keywords: numerical solution, Non local partial differential equation, Deviated boundary
condition, Variable space grid method.

2020 Mathematics Subject Classification: 35J05, 35J08, 35J25

References:

[1] A. Ashyralyev, N. Aggez, A note on the difference schemes of the nonlocal bound-

ary value problems for hyperbolic equations, Numer. Funct. Anal. Optim. 25 (2004) .

[2] A. Ashyralyev, A. Sirma, Nonlocal boundary value problems for the Schrodinger

equation, Comput. Math. Appl. 55 (3) (2008) 392-407.

[3] S. Kutluay Numerical schemes for one-dimensional Stefan-like problems with a

forcing term, Applied Mathematics and Computation 168 (2005) 1159â“1168.
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Abstract: This work addresses third-order partial differential equation subject to nonlocal
integral and nonclassical boundary conditions. The main objective is to establish the well-
posedness of the corresponding nonlocal boundary value problem. Employing an operator-
theoretic framework, we derive stability theorems ensuring the continuous dependence of so-
lutions on the input data. These general results are then applied to obtain explicit stabil-
ity estimates for two specific nonlocal boundary value problems involving third-order PDEs,
thereby illustrating the applicability and significance of the theoretical analysis.

Keywords: Self-adjoint operators, Positive definite operators, Stability analysis, Hilbert
spaces, Nonlocal boundary value problems, Third-order partial differential equations.

2020 Mathematics Subject Classification: 35G15; 47A62

References:

[1] Yu. P. Apakov, B. Yu. Irgashev, Boundary-value problem for a degenerate high-odd-

order equation, Ukrainian Mathematical Journal, vol. 66, no. 10, pp. 1475–1490,

2015.
[2] A. Ashyralyev, K. Belakroum, A stable difference scheme for a third-order partial

differential equation, Journal of Mathematical Sciences, vol. 260, no. 4, pp. 399–417,
2022.

[3] A. Ashyralyev, P. E. Sobolevskii, New Difference Schemes for Partial Differential
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Abstract: Fractional calculus is an extension of classical differential and integral calculus to
arbitrary (non-integer) orders of differentiation. In recent decades, interest in this field has
significantly increased due to its wide range of applications, including modeling of memory
effects, anomalous diffusion, and complex system dynamics.

Definition [1]. Let [a, b] be a finite interval on the real axis R. If 0 < α < 1, then the
left and right Caputo fractional derivatives are defined as:

CD
α
a f (x) = RLD

α
a (f (x) − f (a)) ,

CD
α
b f (x) = RLD

α
b (f (x) − f (b)) .

where RLD
α
a f (x), RLD

α
b f (x) are the left-and right-sided Riemann–Liouville fractional deriva-

tives of order α, 0 < α < 1.

In this work, over the interval [0, T ], we study a boundary value problem for an inhomo-
geneous fractional differential equation of order 0 < α < 1 with involution:

(1) CD
α
y (x) + εCD

α
y (T − x) = f (x) ,

subject to the boundary condition:

(2) ay (0) + by (T ) = c,

here, the function f(x) is continuous on the considered interval.

To solve the problem, the parameterization method proposed by Professor D. Dzhumabaev
[2] is used. A parameter is introduced as: µ = y (0) , and a substitution is made: y (x) =
u (x)+µ. Thus, the original boundary value problem is split into two parts: a Cauchy problem
for a fractional differential equation of order 0 < α < 1, and a linear equation with respect
to the introduced parameter. The parameters are chosen so that the Cauchy problem has a
classical solution.

By applying appropriate transformations, a unique solution to the Cauchy problem is
obtained. Based on the unique solvability of this equation with respect to the parameter, the
solvability of the original boundary value problem is established.

Theorem 1. Let ε ̸= 1. Then, the boundary value problem (1), (2) has a unique solution
if and only if q = a+ b ̸= 0.

Theorem 2. Let ε ̸= 1. If q = a+ b = 0, then the boundary value problem (1), (2) has a
unique solution if and only if the following condition holds:

T∫
0

(
(T − ξ)

α−1 − εξ
α−1

)
f (ξ) dξ =

c
(
1 − ε2

)
Γ(α)

b
.

This research has been/was/is funded by the Science Committee of the Ministry of Education
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Abstract: Problem statement

We consider an initial boundary value problem for the heat equation with a piecewise
constant coefficient and with a fractional time derivative

(1) Lu ≡
{

t−βDα
t u(x, t) − k21uxx(x, t), 0 < x < x0,

t−βDα
t u(x, t) − k22uxx(x, t), x0 < x < l

}
= 0

in the domain Ω = Ω1 ∪Ω2, Ω1 = {(x, t) : 0 < x < x0, 0 < t < T}, Ω2 = {(x, t) : x0 <
x < l, 0 < t < T} (i=1,2), with initial condition

(2) u(x, 0) = φ(x), 0 ≤ x ≤ l

boundary conditions of the form

(3)

{
a11ux(0, t) + a12u(0, t) = 0,

a21ux(l, t) + a22u(l, t) = 0,
0 ≤ t ≤ T,

and with conjugation conditions

(4)

{
u(x0 − 0, t) = u(x0 + 0, t),

k1ux(x0 − 0, t) = k2ux(x0 + 0, t),

where coefficients ki > 0, ai,j , (i, j = 1, 2) real numbers. 0 < α < 1, |a11| + |a12| > 0, |a21| +
|a22| > 0.

By the method of separation of variables, problem (1)-(4) is reduced to a spectral problem,
which is studied in detail in the work [1]. Using the results of this work, we have proven the
following theorem.

Theorem. Let φ(x) be a twice continuously differentiable function satisfying boundary
conditions and conjugation conditions a11φ

′(0) + a12φ(0) = 0, a21φ
′(l) + a22φ(l) = 0,

φ(x0 − 0) = φ(x0 + 0), k1φ
′(x0 − 0) = k2φ

′(x0 + 0). Then the function

u(x, t) =
∞∑

n=1

φnXn(x)E
α,1+

β
α

,
β
α

(−λnt
α+β

)

is a unique classical solution to problem (1)-(4), where

φn =

∫ l

0

φ(x)Yn(x)dx, Xn(x) = Cn

{
Φ2(x0, λn)Φ1(x, λn), 0 < x < x0,

Φ1(x0, λn)Φ2(x, λn), x0 < x < l,

Yn(x) = Cn

{
1
k1

Φ2(x0, λn)Φ1(x, λn), 0 < x < x0,
1
k2

Φ1(x0, λn)Φ2(x, λn), x0 < x < l,

Φ1(x, λn) = cos
(√

λn

k1
x
)
−

a12k1

a11
√
λn

sin
(√

λn

k1
x
)
,

Φ2(x, λn) = cos
(√

λn

k2
(l− x)

)
+

a22k2

a21
√
λn

sin
(√

λn

k2
(l− x)

)
,
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Cn =
( 1

k1
Φ

2
2(x0, λn)

∫ x0

0

Φ
2
1(x, λn)dx+

1

k2
Φ

2
1(x0, λn)

∫ l

x0

Φ
2
2(x, λn)dx

)− 1
2 ,

E
α,1+

β
α

,
β
α

(z)- generalized Mittag-Leffler function.

E
α,1+

β
α

,
β
α

(z) =
∞∑

k=0

ckz
k
, c0 = 1, ck =

k−1∏
j=0

Γ(j(α+ β) + β + 1)

Γ(j(α+ β) + α+ β + 1)
,

Γ(z)-gamma function.
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Abstract: Let X be a complex Banach space, LB(X) be the Banach algebra of linear
bounded operators in X, and Fd = Fd(Z+, X), Z+ = N∪{0}, be one of the Banach spaces of
(one-sided) sequences of vectors from X : lp(Z+, X), p ∈ [1;∞], c0(Z+, X). Let E be a closed
subspace of X,U : Z+ → LB(X) be a bounded function, and DE be a closed linear relation
in Fd, i.e. DE ∈ LRC(Fd), of the form

DE =
{
(x, y) ∈ Fd × Fd : y(n) = x(n) − U(n)x(n− 1), n ⩾ 1; y(0) − x(0) ∈ E}.

Consider DE and DẼ – difference relations that are constructed using the same operator

function U(n) ∈ LB(X), n ⩾ 1, but different closed subspaces of initial conditions E and Ẽ
from X, respectively. From the function U(n), n ⩾ 1, we construct an evolutionary family
U : ∆Z+ → LB(X), of the form U(n,m) = U(n)U(n − 1) . . . U(m + 1) for n > m and

U(n,m) = I for n = m.

If the family U : ∆Z+ → LB(X) admits an exponential dichotomy with splitting pairs

of projection-valued functions P,Q : Z+ → LB(X) and P̃ , Q̃ : Z+ → LB(X), such that

ℑQ(0) = E, ℑQ̃(0) = Ẽ, then the relations DE and DẼ are continuously invertible (see [1])
and have the equality

DẼ = {(Wdx,Wdy) : (x, y) ∈ DE} = W−1
d DEWd,D−1

Ẽ
= WdD−1

E W−1
d ;σ(DẼ) = σ(DE),

Where (Wdx)(n) = Wd(n)x(n) = (P (n) + Q̃(n))x(n), n ∈ Z+ – multiplication operator.

Keywords: difference quotient, exponential dichotomy.
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Abstract: In this work, we consider the subdiffusion equation with nonlocal boundary
conditions: 

Dα
t u(x, t) − uxx(x, t) = ψ(x)η(x, t) + f(x, t),

u(x, 0) = 0, 0 ≤ x ≤ 1,

ux(0, t) − ux(1, t) − au(1, t) = 0, 0 ≤ t ≤ T,

u(0, t) = 0, 0 ≤ t ≤ T,

where 0 < α < 1 is the order of the fractional Caputo derivative, a > 0.

We consider the inverse problem of finding a pair of unknown functions [u(x, t), ψ(x)] using
the additional final overdetermination condition
u(x, T ) = φ(x), 0 ≤ x ≤ 1, where φ(x) is a known function.

For solving this inverse problem, we propose an iterative algorithm on the basis of the
biconjugate gradient method and Tikhonov regularization method. For solving the auxilliary
forward initial boundary value problems at each iteration of the algorithm, we apply a finite
difference scheme based on the L1 and central difference approximations.

This work was financially supported by the Science Committee of the Ministry of Science
and Higher Education of the Republic of Kazakhstan (project No. AP19676663).

Keywords: fractional differential equations, nonlocal problems, inverse and ill-posed prob-
lems, numerical algorithms, conjugate gradient method
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Abstract: We investigate boundary value problems for third-order partial differential
equations in a Hilbert space H involving a self-adjoint positive definite operator A. Using an
operator-theoretic approach, we establish stability estimates for the corresponding solutions.
In particular, we analyze three classes of boundary value problems with multipoint conditions
and derive explicit stability bounds.

Furthermore, we consider a multipoint nonlocal boundary value problem for a third-order
partial differential equation. To approximate its solution, we construct three-step difference
schemes based on Taylor’s decomposition at four points. The stability of these schemes is
established, and the theoretical findings are supported by numerical experiments.

Keywords: Third-order partial differential equations, Multipoint boundary value problems,
Stability analysis, Difference schemes, Numerical experiments.
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Abstract: In this work, we consider the two-dimensional elliptic equation in the following
form: 

r(x1)ux1x1 (x1, x2) +
[
p(x1)ux1 (x1, x2)

]
x1

− q(x1)u(x1, x2) = f(x1),

a < x1 < b, c < x2 < d,

u(a, x2) = f1(x2), c ≤ x2 ≤ d,

u(b, x2) = g1(x2), c ≤ x2 ≤ d,

u(x1, c) = f2(x1), a ≤ x1 ≤ b,

u(x1, d) = g2(x1), a ≤ x1 ≤ b,

where r(x1) > 0, p(x1) > 0, q(x1) > 0, f1(x2), f2(x1), g1(x2), g2(x1) are continuous func-
tions, and p(x1) is differentiable.

To solve the boundary problem for this equation, we construct a finite difference scheme
with a second order for both coordinates. After application of the constructed scheme, we
need to solve a large SLAE with block-tridiagonal matrix. To solve this system, we use the
direct method of block elimination.

This work was financially supported by the Science Committee of the Ministry of Science
and Higher Education of the Republic of Kazakhstan (project No. AP23487362).
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Abstract: This report is devoted to the time-fractional parabolic equation with Zaremba-
type boundary conditions:

D
α
t u(t, x) − (a(x)ux(t, x))x + σu(t, x) = f(t, x), 0 < t < T, 0 < x < l,

ux(t, 0) = 0, u(t, l) = 0, 0 ≤ t ≤ T,

u(T, x) = 0, 0 ≤ x ≤ l.

Here, Dα
t = Dα

T− denotes the standard Riemann–Liouville fractional derivative of order α ∈
(0, 1). Also, a(x) (x ∈ (0, l)) and f(t, x) (t ∈ (0, T ), x ∈ (0, l)) are assumed to be given
smooth functions, a(x) ≥ a0 > 0, σ > 0.

This paper examines a time-fractional parabolic equation with Zaremba-type (mixed Dirichlet-
Neumann) boundary conditions. Stable finite difference schemes are formulated, and a coer-
cive stability estimate is established for the first-order scheme. The modified Gaussian elim-
ination method is applied to solve both first- and second-order schemes in one-dimensional
cases.

Keywords: time-fractional parabolic equations, Zaremba-type boundary conditions, Riemann-
Liouville derivative, difference schemes, stability
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Abstract: Artificial intelligence (AI) in education is not a substitute for a teacher, but
rather a supportive tool. It takes over routine tasks and helps create more engaging and
effective learning experiences.

AI is a valuable tool that allows teachers to save time, adapt the learning process to the
needs of individual students, and introduce innovative forms of learning. While some teachers
spend hours creating tests and searching for materials, others are already actively using AI
to accelerate lesson preparation and generate new teaching ideas.

University faculty members employ AI to analyze academic performance, update curricula,
and select appropriate educational resources. The capabilities of artificial intelligence are
particularly valued by teachers from the Department of Applied Mathematics and Computer
Science at our university.

In the course of discussion on this topic, various approaches to the integrating AI into the
educational process have been developed at universities in Turkmenistan. This indicates a
growing interest and need for, the integration modern technologies into the higher education
system.

Keywords: Artificial intelligence, higher education, adaptive learning, educational technolo-
gies, digital transformation, personalized learning, Turkmenistan universities
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Abstract: We consider the following nonlinear Caputo fractional integro-differential equation
with non-linear boundary conditions:

CDq1u (t) = F (t, u (t) , Iq2u (t)) +G (t, u (t) , Iq3u (t)) ,(1)

h (u (0) , u (T )) = 0,(2)

where F,G ∈ C [J × R × R+,R], u ∈ C1 [J,R] , h ∈ C
[
R2,R

]
, J = [0, T ] and 0 < q3 ≤ q2 ≤

q1 < 1.

The monotone iterative technique, with the method of coupled upper and lower solutions,
produces monotone sequences that converge uniformly and monotonically to the extremal
solutions of the problem considered. In this work, we examine the existence of the solutions
of the problem (1)-(2) by applying generalized monotone iterative technique to obtain minimal
and maximal solutions.

Keywords: Caputo derivative, Integro-differential equation, Monotone Iterative Technique,
Maximal and Minimal solutions.
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Abstract: We consider the following boundary value problem (BVP) involving fractional
operator with variable order (VO)

(1) Dϑ(t,x(t))

0+
x(t) = F (t, x(t)), t ∈ Ω := (0, L), 0 < L < ∞,

(2) x(0) = x(L) = 0,

where Dϑ(t,x(t))

0+
denotes Riemann-Liouville (R-L) derivative of variable order and ϑ, F are

specified nonlinear functions, 1 < ϑ∗ ≤ ϑ(t, x(t)) ≤ ϑ∗ < 2.
This work introduces a boundary value problem for a nonlinear fractional differential equa-
tion characterized by the nonlinear variable order and discusses the existence and uniqueness
of solutions. By employing the contraction mapping principle, we demonstrate an existence
theorem in a Lebesgue space. We then employ the Schauder fixed-point theorem to establish
an existence result in the weighted space of continuous functions.
Keywords: Fixed point theory, fractional differential and integral of variable order, Boundary-

value problem
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Abstract: This study presents a detailed mathematical investigation of a three-phase
Stefan problem that models the simultaneous melting, solidification, and vaporization pro-
cesses in electrical contact materials. The analysis incorporates a generalized heat equation
that accounts for both the Thomson effect and Joule heating. The model features nonlinear
thermo-physical properties and temperature - dependent coefficients across the vapor, liquid,
and solid regions. Through the use of dimensionless variables and self-similar transformations,
the governing equations are reduced to a boundary value problem for a system of nonlinear
ordinary differential equations [1],[2]. Integral equations for the liquid and solid phases are
derived, and the existence and uniqueness of their solutions are rigorously demonstrated us-
ing the Banach fixed-point theorem, assuming suitable conditions on the thermal coefficients.
Sufficient criteria for contraction mappings are established, and bounds for the associated
integral operators are obtained. These findings offer a solid theoretical basis for accurately
simulating complex phase-change phenomena in electrical contact systems, particularly those
involving localized heating and non-equilibrium thermoelectric effects.
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Abstract: Quantum tori Td
θ , defined via a skew-symmetric real d×d matrix θ, are funda-

mental objects in noncommutative geometry (see, e.g., [1]). Also known as noncommutative
tori or irrational rotation algebras, they generalize classical tori by incorporating noncommu-
tative structures relevant in quantum mechanics and mathematical physics.

In recent years, quantum tori have also become important objects in noncommutative har-
monic analysis (see, e.g., [2], [3]), where many classical tools have been successfully extended
to this setting. Notably, differential operators and function spaces analogous to classical
ones have been defined, enabling new approaches to classical inequalities and PDEs in the
noncommutative framework.

In continuation of the ongoing developments in noncommutative harmonic analysis on
quantum tori, we initiate our investigation by establishing a quantum analogue of the classical
Gagliardo–Nirenberg inequality in this noncommutative setting, involving noncommutative
(fractional) Sobolev spaces and Lp-spaces over the quantum tori.

As an application of this result, we study the global well-posedness of the following non-
linear damped wave equation with the fractional Laplacian of order ν

2 > 0:
∂2
t x(t) + (−∆θ)

ν
2 x(t) + b∂tx(t) +mx(t) = f(x(t)), t > 0,

x(0) = x0 ∈ H
ν
2
2 (Td

θ),

∂tx(0) = x1 ∈ L2(Td
θ),

where the damping term determined by b > 0 and with the mass m > 0, and the function f
is assumed to satisfy certain Lipschitz type condition.

This research was supported by the Science Committee of the Ministry of Science and
Higher Education of the Republic of Kazakhstan (Grant No. AP22784356).
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Abstract: We study a two-species reaction–diffusion (RD) system in which the fluxes for each
species involve gradients of both unknown variables. For a certain range of parameters, we
demonstrate the existence of two distinct types of periodic stationary solutions. These solu-
tions allow us to partition the eight-dimensional parameter space and identify regions—known
as Turing domains—where such solutions occur. The boundaries of these regions, analogous to
bifurcation points in lower dimensions, are referred to as bifurcation surfaces. It is commonly
believed that these stationary solutions represent the long-time limits (as t → ∞) of the solu-
tions to the corresponding time-dependent RD system. We also provide numerical simulations
that support this hypothesis, suggesting that these stationary patterns are attractors with a
wide basin of attraction in the space of initial conditions.

We consider the following reaction–diffusion system:

(1)


ut = (uux + ε1uvx + ε3vux)x + u(1 − u− cv) := −

∂

∂x
J1 + u(1 − u− cv),

vt = (dvvx + ε4uvx + ε2vux)x + v(a− bu− v) := −
∂

∂x
J2 + v(a− bu− v).

The term “cross-diffusion” here means that at least one of the fluxes Ji contains both
gradients ux and vx, i.e., either ε1 or ε2 (or both) are different from zero.

We also study stationary solutions of the form:

(2)

{
(uu

′
+ ε1uv

′
+ ε3vu

′
)
′
+ u(1 − u− cv) = 0,

(dvv
′
+ ε4uv

′
+ ε2vu

′
)
′
+ v(a− bu− v) = 0,

x ∈ R.

One of the main difficulties in the theory of nonlinear reaction-diffusion systems contain-
ing parameters is to find the bifurcation surfaces in parameter space (a generalization of a
bifurcation point in the case of one parameter), which separate domains with different solu-
tion behavior. It turns out that exact solutions can help in this respect too: the solutions
we find must be physically relevant, non-negative, periodic, etc. This will be the case only if
the parameters satisfy a rather complicated nonlinear algebraic system of inequalities, whose
solutions define domains in parameter space.

This research was funded by the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan (Grant No. AP26199323).
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Abstract: Let us consider the following nonlinearly degenerate domain

Ω = {x, t | φ1(t) < x < φ2(t), 0 < t < T < ∞},

with the cross-section Ωt = {φ1(t) < x < φ2(t)} for a fixed value of the time variable
t ∈ (0, T ), and for which the condition

φ1(0) = φ2(0),

is satisfied.

In the domain Ω, we study the following inverse problems for the Burgers’ equation:

∂ tu(x, t) + u(x, t)∂xu(x, t) − ν∂
2
xu(x, t) = λ(t)u(x, t) + w(t)f(x, t),

with various combinations of unknowns and boundary conditions.

The main purpose of this work is to determine additional conditions under which these
inverse problems are uniquely solvable.

This research was funded by the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan (Grant No. AP26198551).
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Abstract: Let 0 < q, p, r < ∞ and 1
p + 1

p′ = 1. Let u = {ui}∞
i=1 and v = {vi}∞

i=1 be weight

sequences, i.e., positive sequences of real numbers. We denote by lp,v the space of sequences

f = {fi}∞
i=1 of non-negative real numbers such that ∥vf∥p =

(∑∞
i=1 |vifi|p

) 1
p < ∞.

For any non-negative f ∈ lp,v we consider the following iterated discrete Hardy-type
inequality with three weights

(1)

( ∞∑
n=1

u
q
n(K

±
f)

q
n

) 1
q

≤ C

( ∞∑
i=1

(vifi)
p

) 1
p

,

where C is a positive constant independent of f and K is a quasilinear operators defined as
follows

(K
−
f)n =

( ∞∑
k=n

ak,n

( ∞∑
i=k

fi

)r) 1
r

, (K
+
f)n =

(
n∑

k=1

an,k

(
k∑

i=1

fi

)r) 1
r

.

where ak,n is a non-negative matrix. This type of operator was studied for the first time in
[1].

We provide a characterization of the inequality (1) in the general case of the matrix when
0 < p ≤ r < q < ∞. For the parameter ratio 0 < r < q < p < ∞, we have been studied the
inequality (1) under the following matrix assumption: there exist d ≥ 1, a sequence of positive
numbers {ωk}∞

k=1 and a non-negative matrix (bi,j), where bi,j is almost non-decreasing in i
and almost non-increasing in j such that the inequalities

1

d
(ai,k + bk,jωi) ≤ ai,j ≤ d(ai,k + bk,jωi)

hold for all i ≥ k ≥ j ≥ 1.

Furthermore, we explore the significant impacts of our results on the analysis of bilinear
inequalities, demonstrating their practical applications and importance in the field.

This research was funded by the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan (Grant No. AP22684768).
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Abstract: We propose a hybrid stochastic–machine learning framework for financial time
series prediction, applied specifically to modeling and forecasting gold prices. The asset price
process St is modeled using a stochastic differential equation (SDE) driven by both a Brownian
motion and a continuous-time Markov chain (CTMC), which captures the regime-switching
behavior observed in financial markets. The price process satisfies in general the SDE:

dSt = g(µ(Zt))St dt+ f(σ(Zt))St dBt, S0 = x > 0,

where Zt is a Markov jump process with a finite state space, and the functions g(µ(Zt)) and
f(σ(Zt)) represent the regime-dependent drift and volatility, respectively. As an application,
We consider a mean-reverting formulation for the log-price:

d(logSt) = α(µ(Zt) − logSt) dt+ σ(Zt) dBt,

with α representing the speed of mean reversion and µ(Zt) the regime-dependent long-term
mean. To estimate the model parameters, we employ a neural network-based machine learning
approach. The parameters to be estimated include:

µi and σi, i = 1, 2, . . . , N

as well as the transition rate matrix Q of the CTMC governing Zt. Using historical gold price
data, we calibrate the model and use the estimated parameters for future price prediction.
Comparisons with real data demonstrate the improved performance and predictive accuracy
of our hybrid model over traditional approaches. This work illustrates the effectiveness of
integrating stochastic modeling with machine learning for financial forecasting tasks.
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Abstract: One of the effective methods for representing solutions to boundary value
problems for elliptic equations is a method based on constructing the Green’s function of the
problem. Many works are devoted to constructing the Green’s function in explicit form for
various classical boundary value problems.

The following scientific results were obtained in this report:
conditions for the solvability of boundary value problems with general conditions for the
triharmonic equation in a unit multidimensional ball S = {x ∈ Rn : |x| < 1} were found in
terms of a polynomial that does not have integer roots; a theorem on the existence of a solution
to the original problem with minimal requirements for the smoothness of the boundary data
was proved; an integral representation of the solution to this problem without the Green’s
function through solutions of three harmonic functions was given [1]. As an analogue of the
Almansi formula.

This research was funded by the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan (Grant No. AP19678182).
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Abstract: We consider nonlocal boundary conditions for the Goursat â“ Darboux system in
the domain Q = [0, T ] × [0, l]

(1) ztx = f (t, x, z (t, x)) , (t, x) ∈ Q,

(2) Az (0, x) +

T∫
0

n (t) z (t, x) dt = φ (x) , x ∈ [0, l] ,

(3) Bz (t, 0) +

l∫
0

m (x) z (t, x) dt = ψ (t) , t ∈ [0, T ] .

Here z ∈ Rn, f : Q × Rn → Rn is continuous on Q × Rn, det

(
A+

T∫
0

n (t) dt

)
̸=

0, det

(
B +

l∫
0

m (x) dx

)
̸= 0 and bφ (0) +

l∫
0

m (x)φ (x) dx = Aψ (0) +
T∫
0

n (t)ψ (t) dt

Theorem. A problem (1)-(3) is equivalent to the following integral equation:

z (t, x) =

B +

l∫
0

m (x) dx

−1

ψ (t) +

A+

T∫
0

n (t) dt

−1

φ (x)−

−

B +

l∫
0

m (x) dx

−1 A+

T∫
0

n (t) dt

−1 Bφ (0) +

l∫
0

m (x)φ (x) dx

+

+

T∫
0

l∫
0

G (t, x, τ, s) f (τ, s, z) dτ ds.

where

G (t, x, τ, s) =

B +

l∫
0

m (x) dx

−1 A+

T∫
0

n (t) dt

−1

×

×



[
A+

τ∫
0

n (α) dα

] [
B +

s∫
0

m (β) dβ

]
, 0 ≤ τ ≤ t, 0 ≤ s ≤ x,

−
[
A+

τ∫
0

n (α) dα

]
l∫
s

m (β) dβ, 0 ≤ τ ≤ t, x < s ≤ l,

−
[
B +

s∫
0

m (β) dβ

]
T∫
τ

n (α) dα, t < τ ≤ T, 0 ≤ s ≤ x,

T∫
τ

n (α) dα
l∫
s

m (β) dβ, t < τ ≤ T, x < s ≤ l.

Similar problems have been considered in [1],[2].
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Abstract: This work addresses the synchronization phenomenon in fractional-order bidi-
rectional associative memory (BAM) neural networks with time-varying delays. We first con-
struct a master“slave model that includes external disturbances and memory-based feedback
control. The synchronization errors are formulated through fractional differential dynamics,
capturing the influence of delay and feedback memory. By developing a suitable Lyapunov
functional and applying fractional-order stability lemmas involving the Mittag-Leffler func-
tion, we derive linear matrix inequality conditions that ensure synchronization to a bounded
region.

The proposed results highlight the influence of fractional dynamics on the convergence
behavior and synchronization performance of BAM neural networks.

Numerical simulations confirm that the designed memory-based controllers achieve reliable
quasi-synchronization under delays dependent on time and external forcing.

This research was funded by the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan (Grant No. BR21882172).
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